
Statistics 210B Lecture 1 Notes

Daniel Raban

January 18, 2022

1 Introduction to High-Dimensional Statistics

1.1 Overview of the course

The first half of this course will cover theoretical tools used to establish theorems in high-
dimensional statistics:

• Concentration inequalities

• Empirical process theory

• Gaussian process theory and random matrix theory

The second half of this course will cover statistical problems:

• Covariance estimation

• Sparse estimation problem

• Principal component analysis (PCA) in hihg dimension

• Non-parametric regression

• Minimax lower bounds

1.2 A motivating example: sparse estimation

Here is a motivating example:

Example 1.1 (High dimensional sparse estimation). Here is the assumption of our statis-
tical model. We observe

Y =

Y1

...
Yn

 ∈ Rn, X =

X
>
1
...
X>n

 ∈ Rn×d, Xi ∈ Rd.

1



We assume that the relationship Y = Xθ∗ + ω holds, where θ∗ ∈ Rd with θ∗ =

θ
∗
1
...
θ∗d

 and

ω ∈ Rn is noise. In the high dimensional case, we have n� d, so standard linear regression
will not be useful.

To deal with the problem in the high-dimensional case, we make the further assumption
that θ∗ is supported on S ⊆ {1, 2, . . . d}, with |S| denoted by s; that is, θ∗i can be nonzero
only on the indices in S. This is called an s-sparse assumption. Our task is that given
(Y,X), we want to estimate θ∗.

We present results without proof, although we will develop these results later in the
course.

(a) The naive estimator (assuming ωi
iid∼ N(0, σ2)) is

θ̂LS := arg min
θ∈Rd

1

2n
‖Y −Xθ‖22.

Classical theory tells us that

E[‖θ̂LS − θ∗‖22] =
tr(X>X)−1

n
σ2

= Θ

(
d

n
σ2

)
If n � d, then E[‖θ̂LS − θ∗‖22] � 1. This estimator, however does not use the
assumption that θ∗ ∈ Rd is s-sparse.

(b) The LASSO estimator1 is

θ̂LASSO := arg min
θ∈Rd

1

2n
‖Y −Xθ‖22 + λn‖θ‖1,

which has an L1 penalty. Our goal is to show that

‖θ̂LASSO − θ∗‖2 . c

√
s log d

n
.

We need the following condition:

Definition 1.1. The matrix X satisfies the restricted eigenvalue (RE)2 condition
over S with parameter (κ, α) if

1

n
‖X∆‖22︸ ︷︷ ︸

= 1
n
〈∆,X>X∆〉

≥ κ‖∆‖22 ∀∆ ∈ Cα(S) := {∆ ∈ Rd : ‖∆Sc‖1 ≤ α‖∆S‖1}.

1LASSO comes from Tbshrani in 1994 and Chen, Donoho, and Saunders in 1994, as well.
2This condition was introduced by Bickel, Ritov, and Tsybakov in 2009.
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This is a geometric assumption on L(θ) = 1
2n‖Y −X(θ∗ + ∆)‖22. If X is (κ, α)-RE,

then L(∆) is strongly convex in the cone Cα(S).

Theorem 1.1. Suppose θ∗ is supported on S, with |S| = s, and X satisfies the RE

condition over S with parameter (κ, 3). Further assume that λn ≥ 2‖X>ω
n ‖∞. Then

‖θ̂LASSO − θ∗‖2 ≤
3

κ

√
sλn.

What does this mean? The sparsity assumption is more natural; for example, if we
are dealing with gene data in biology, we may assume that only a few genes will
determine a trait. Let’s now tackle a few questions about our assumptions:

1. When does RE hold?

2. How large is 2‖X>ω‖∞/n?

3. How can we compare the bound with the least squares estimator?

Make the assumption that XI
iid∼ N(0, Id) (which can be generalized) and ωi

iid∼
N(0, σ2). Here are the answers to our questions:

1.

Proposition 1.1. Suppose (Xi)i∈[n]
iid∼ N(0, Id). Fix S ⊆ [d] with |S| = s. Then

there exist universal constants 0 < c1 < 1 < c2 such that when n ≥ c2s log d, we
have

P( 1
2n‖X∆‖22 ≥ c1‖∆2‖2 ∀∆ ∈ C3(s)) ≥ 1− e−n/32

1− e−n/32
.

This tells us that the (c1, 3)–RE condition is satisfied with high probability
(w.h.p.) as long as n ≥ s log d. To establish this proposition, we need to use
empirical process theory and concentration inequalities.

2.

Lemma 1.1. Suppose that maxi∈[n] ‖xi‖2/
√
n ≤ Bn and ωi

iid∼ N(0, σ2). Then
there is a universal constant c such that for all t > 0,

P

(
‖X>ω‖∞

n
≤ cBnσ

(√
2 log d

n
+ t

))
≥ 1− 2e−nt

2/2

Moreover, when Xi ∼ N(0, Id), then for all t ∈ (0, 1),

P
(

max
i∈[n]

‖Xi‖22
n
≤ 1 + t

)
≥ 1− ne−nt2/8.
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This lemma tells us that

2‖X>ω‖∞
n

≤ C̃σ
√

log(d/δ)

n︸ ︷︷ ︸
λn

with probability at least 1−2δ. To establish this lemma, we need concentration
inequalities and empirical process theory.

3. Plug in λ = C̃σ

√
log(d/δ)

n to get

‖θ̂LASSO − θ∗‖2 ≤
3

κ

√
sλn =

3

κ
C̃σ

√
s log(d/δ)

n

with probability at least 1− 3δ. This means that as long as n & s log(d/δ),

‖θ̂LASSO − θ∗‖22 � 1.

In comparison, E[‖θ̂LS − θ∗‖22] = Θ( dnσ
2), which needs n ≥ d to be small.

1.3 Relationships with other statistical topics

Here are the relationships between this course and other courses:

• Stat 210A Theoretical Statistics: In statistical decision theory, we have a statistical
model P = {Pθ : θ ∈ Θ} with a statistical procedure δ : D → Θ and a loss function
|ell : Θ × Θ → R. We can then calculate the risk function R(θ; δ) = Eθ[`(θ; δ(Z))].
We can compare risk functions for different procedures by looking at summarized
statistics of the risk function:

– Bayes risk: We assume θ ∼ π, so RB(π; δ) = Eθ∼π[R(θ; δ)].

– Minimax: We can look at RM (Θ; δ) = supθ∈ΘR(θ; δ).

In our example, LASSO is approximately minimax optimal

• CS 281A/Stat 241A Statistical learning theory: This focuses on a different (but
related) collection of models (empriical risk minimization). We study them using a
similar set of tools (concentration inequalities, empirical process theory).

• Stat 260 Mean field asymptotics in statistical learning: Here, we focus on the same
collections of statistical models but study them in another regime (n, d → ∞ with
n/d→ constant asymptotics). We use different collection of tools (statistical physics,
AMP, Gaussian comparison). This needs stronger assumptions but gives more refined
results.

Other useful courses are convex optimization and information theory. These courses
are important in order to learn deep learning theory and reinforcement learning theory. In
the next lecture, we will start learning about concentration inequalities.
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